Divisibility Rules

So, is there any way to tell whether a division problem is going to work out to a whole number? Yes, there is. There is a set of rules called Divisibility Rules that tell whether the answer to a division problem will be a whole number without actually having to do the long division.

Dividing by 1: If you divide any whole number by l, you always get a whole number.

Dividing by 2: Even numbers "evenly" divide into 2. Odd numbers divide into 2 with an "odd one out."

Dividing by 3: Add up the digits (twice, if necessary); if the sum is divisible by 3 , then the number is too. Let's say you need to divide $123: 1+2+3=6$, which is divisible by 3 , so 123 is divisible by 3. Another example: 678678. Add $6+7$ $+8+6+7+8=42 ; 4+2=6$, which is divisible by 3 . That means 678678 is divisible by 3 .

Dividing by 4: Look at the last two digits. If they are divisible by 4 , the number is as well. For example, the last two digits of 2357924 are 24 , which is divisible by 4. Therefore, 2357924 is

Dividing by 5: If the last digit is a 5 or a 0 , then the number is divisible by 5 . For example, 2357925 is divisible by 5 , because the last digit is a 5 .

Dividing by 6: If the number is divisible by both 3 and 2, it is divisible by 6 as well. For example, 2157924 is divisible by 6 because it is even (divisible by 2) and the digits add up to 30 , which is divisible by 3 .

Dividing by 7: To find out if a number is divisible by 7 , take the last digit, double it, and subtract it from the rest of the number without the last digit. If you get an answer divisible by 7 (including 0), then the original number is divisible by 7. If you don't know the new number's divisibility, you can apply the rule again. For example, 161 is divisible by 7 because $2 \times$ 1 (the last digit) $=2$ and $16-2=14$, which is divisible by 7.
divisible by 4.

Dividing by 8: If the last three digits of a number are divisible by 8 , then so is the whole number. How do you check the last three digits? If the first digit is even, and the last two digits are divisible by 8 , the number is divisible by 8 . If the first digit is odd, subtract 4 from the last two digits; the number will be divisible by 8 if the resulting last two digits are. For example:

- 2448: Check the last three digits, 448. Here, 4 is even and 48 is divisible by 8 , so 2448 is also divisible by 8.
- 192: Here, l is odd, so you need to subtract 4 from the last two digits: $92-4=88$; 88 is divisible by 8 , so 192 is as well.

Dividing by 9: Add the digits. If they are divisible by 9 , then the number is as well. For example: 52866 is divisible by 9 beccuse $5+2+8+6+6=27$, and 27 is divisible by 9 .

Dividing by 10: If the number ends in 0 , it is divisible by 10 .

Dividing by 11: Keep subtracting the last digit from the previous digits until you can tell if the resulting number is divisible by 11 . For example: 645634 is divisible by 11 because 64563-4 = 64559; $6455-9=6446 ; 644-6=638 ; 63-8=55$, and 55 is divisible by 11 .

Dividing by 12: Check for divisibility by 3 and 4.

